



Dual Wiegand network interface for elevator control (up to 4 floors)

User's guide





© 2004 – 2015, TECH FASS s.r.o., Věštínská 1611/19, 153 00 Prague 5, Czech Republic, www.techfass.cz, techfass@techfass.cz (Date of release: 2015/07/23, valid for FW version 2.78)



# 1 Content

| 1 | Coi  | ntent                                                           | 2  |
|---|------|-----------------------------------------------------------------|----|
| 2 | Pro  | oduct description                                               | 3  |
| 3 | Тес  | chnical parameters                                              | 4  |
| З | 3.1  | Product version                                                 | 4  |
| З | 3.2  | NWGD 46LIFT technical features                                  | 4  |
| З | 3.3  | Mechanical design                                               | 4  |
| 4 | Inst | tallation                                                       | 5  |
| 4 | 1.1  | Terminals and jumpers                                           | 5  |
| 4 | .2   | Standard connection (recommended, not obligatory) <sup>2)</sup> | 6  |
| 4 | .3   | LED Indicators                                                  | 7  |
| 4 | .4   | Installation instructions                                       | 7  |
| 5 | Set  | tting parameters of the module                                  | 7  |
| 5 | 5.1  | Module parameters setting                                       | 7  |
| 5 | 5.2  | HW address setting                                              | 8  |
| 5 | 5.3  | Configuration of the reader keypad                              | 8  |
| 5 | 5.4  | WIEGAND input data interpretation                               | 9  |
| 6 | Inte | erface module functioning                                       | 10 |
| 6 | 5.1  | Operating modes                                                 | 10 |
| 6 | 5.2  | Emergency "Door Open" function description                      | 10 |
| 7 | Use  | eful links                                                      | 10 |



# 2 **Product description**

The *NWGD 46LIFT*<sup>1)</sup> dual Wiegand network interfaces are designed for connection of one or two readers, biometric sensors and similar devices with *WIEGAND output* (26, 34, 42 or 56 bits) to the *APS BUS* of the APS 400 identification system. Up to 16 NWGD 46LIFT network interfaces can be connected to a single MCA 168 controller.

The modules are designed for elevator control (up to 4 floors).





Pic. 1: NWGD 46LIFT

The *NWGD 46LIFT* is intended for connection of one or two standard readers with Wiegand interface independent of the identification technology and/or for control of the *APERIO* wireless locks. So, various reader technologies (HID proxy, iCLASS, Mifare, Mifare DesFire, Indala etc.) according to the needs of customers can be used in APS 400 identification system.

The module is designed for connecting readers without keypad or with reason keypad (entering a functional code) for time and attendance purposes, or for PIN pad readers.

The PIN code has 4 digit fixed length in APS 400 systems.

When a key press evaluation is required the keypad data transmission has to be configured as follows: One key buffering, message length 4 bits, no parity.

<sup>1)</sup> Commercial designation of available versions is described in *table 1*.



# **3** Technical parameters

## 3.1 Product version

|   | Product designation | Catalogue number | Attachable devices                       |
|---|---------------------|------------------|------------------------------------------|
| > | NWGD 46LIFT         | 54446C00         | 2x reader with a standard WIEGAND output |

Table 1: Product version

### 3.2 NWGD 46LIFT technical features

| SS          | Supply voltage         |         | 8 ÷ 18 VDC                                                                    |  |  |  |
|-------------|------------------------|---------|-------------------------------------------------------------------------------|--|--|--|
| cal feature | Current domand         | Typical | 70 mA                                                                         |  |  |  |
|             | Current demand         | Maximal | 150 mA                                                                        |  |  |  |
|             | Memory                 | Cards   | 4x 750 IDs (for emergency function)                                           |  |  |  |
| hni         | Inputs                 |         | 4x logical potential-free contacts                                            |  |  |  |
| Tec         | Outputs                |         | 4x relay NC/NO, 2A/24V                                                        |  |  |  |
|             | Indicators             |         | LED indicators for communication and input/output status signaling on the PCB |  |  |  |
|             | Tamper protection      |         | Terminals for external NC contact                                             |  |  |  |
|             | Reader interface       |         | 2x Wiegand, 2x PIEZO, 2x power supply terminals, 2x TAMPER                    |  |  |  |
|             | Communication interfac | e       | 1x RS 485 – APS BUS                                                           |  |  |  |

Table 2: Technical features of NWGD 46LIFT

## 3.3 Mechanical design

| Jn   | Weight                | 0,218 kg                 |
|------|-----------------------|--------------------------|
| esiç | Operating temperature | -10°C ÷ +40°C            |
| Ď    | Humidity              | Max. 75%, non-condensing |
|      | Environment           | Indoor                   |
|      | Dimensions            | 6 DIN units, low profile |

Table 3: Mechanical design



# 4 Installation



4.1 Terminals and jumpers

Pic. 2 Terminals and jumpers



Table 4: Configuration jumpers X2

X3.1 ÷ 5 Factory use

Table 5: Factory use connector X3

| t, X5              | X4(5).1 | Idle state definition (B) |  |  |  |  |  |  |
|--------------------|---------|---------------------------|--|--|--|--|--|--|
| 485 X <sup>,</sup> | X4(5).2 | Idle state definition (A) |  |  |  |  |  |  |
| RS                 | X4(5).3 | Line terminator           |  |  |  |  |  |  |

Table 6: Setting the RS 485 lines X4, X5



| /1   | 1  | Ad 2 - Relay NO              |           |  |  |  |
|------|----|------------------------------|-----------|--|--|--|
| S\   | 2  | Ad 2 - Relay NC              | LED 1     |  |  |  |
| ock  | 3  | Ad 2 - Relay C               |           |  |  |  |
| ld l | 4  | Ad 1 - Relay NO              |           |  |  |  |
| ina  | 5  | Ad 1 - Relay NC              | LED 2     |  |  |  |
| erm  | 6  | Ad 1 - Relay C               |           |  |  |  |
| T    | 7  | Ad 1 - Beeper<br>(reader)    | LED 3     |  |  |  |
|      | 8  | LED indication (reader)      | LED 4     |  |  |  |
|      | 9  | Ad 1 - Wiegand<br>DATA 1     |           |  |  |  |
|      | 10 | Ad 1 - Wiegand<br>DATA 0     | LED 5     |  |  |  |
|      | 11 | 0 V output                   |           |  |  |  |
|      | 12 | +8 ÷ 18 VDC extern           | al output |  |  |  |
|      | 13 | Tamper ext. 1                | LED 6     |  |  |  |
|      | 14 | Ad 2 - Input 1               | LED 7     |  |  |  |
|      | 15 | Ad 1 - Input 1               | LED 8     |  |  |  |
|      | 16 | 0 V                          |           |  |  |  |
|      | 17 | B wire – AUX RS<br>485 BUS   |           |  |  |  |
|      | 18 | A wire – – AUX<br>RS 485 BUS | LED 9     |  |  |  |
|      | 19 | 0 V                          |           |  |  |  |
|      | 20 | B wire RS 485                |           |  |  |  |
|      | 21 | A wire RS 485                | LED 10    |  |  |  |
|      | 22 | 0 V power supply             |           |  |  |  |
|      | 23 | +8 ÷ 18 VDC power            | supply    |  |  |  |
|      |    |                              |           |  |  |  |

Tab. 7: Terminal block SV1 and LEDs

| /2   | 1  | Ad 4 - Relay NO           |           |  |  |  |  |  |
|------|----|---------------------------|-----------|--|--|--|--|--|
| S.   | 2  | Ad 4 - Relay NC           | LED 11    |  |  |  |  |  |
| ock  | 3  | Ad 4 - Relay C            |           |  |  |  |  |  |
| ld I | 4  | Ad 3 - Relay NO           |           |  |  |  |  |  |
| ina  | 5  | Ad 3 - Relay NC           | LED 12    |  |  |  |  |  |
| ern  | 6  | Ad 3 - Relay C            |           |  |  |  |  |  |
| F    | 7  | Ad 3 - Beeper<br>(reader) | LED 13    |  |  |  |  |  |
|      | 8  | Alarm LED                 | LED 14    |  |  |  |  |  |
|      | 9  | Ad 2 - Wiegand<br>DATA 1  |           |  |  |  |  |  |
|      | 10 | Ad 2 - Wiegand<br>DATA 0  | LED 15    |  |  |  |  |  |
|      | 11 | 0 V output                |           |  |  |  |  |  |
|      | 12 | +8 ÷ 18 VDC extern        | al output |  |  |  |  |  |
|      | 13 | Tamper ext. 2             | LED 16    |  |  |  |  |  |
|      | 14 | Ad 4 - Input 1            | LED 17    |  |  |  |  |  |
|      | 15 | Ad 3 - Input 1            | LED 18    |  |  |  |  |  |
|      | 16 | 0 V                       |           |  |  |  |  |  |
|      | 17 | 17 TAMPER                 |           |  |  |  |  |  |

Tab. 8: Terminal block SV2 and LEDs



Table 9: Service button

### 4.2 Standard connection (recommended, not obligatory)<sup>2)</sup>

| nection | Address 1 ÷ 4 | Input 1  | Door contact / lift button contact, active when door closed / button pressed |
|---------|---------------|----------|------------------------------------------------------------------------------|
| Conn    |               | Output 1 | Door lock control / floor selection button enabling or disabling             |

Table 10: Standard connection

<sup>2)</sup> The function of inputs and outputs is defined by user's programming of the controller.



### 4.3 LED Indicators

| ſS           |                   | Continuously lit               | Online operating mode via RS 485          |  |  |  |  |
|--------------|-------------------|--------------------------------|-------------------------------------------|--|--|--|--|
| _ED indicato | Red   ED 10 (9)   | Blinking with 2s period        | Offline mode, emergency function enabled  |  |  |  |  |
|              | Ned LLD 10 (3)    | Short flashing with 1 s period | Offline mode, emergency function disabled |  |  |  |  |
|              | Yellow LED 4 (14) |                                | Reserved                                  |  |  |  |  |
|              | Red LED 10        |                                | Communication on the system BUS           |  |  |  |  |
|              | Red LED 9         |                                | Reserved                                  |  |  |  |  |
|              | Green LED 5 (15)  |                                | ID media reading from external reader     |  |  |  |  |
|              | Green LED 6,7,8 ( | 16,17,18)                      | Activated inputs                          |  |  |  |  |
|              | Green LED 1,2 (11 | ,12)                           | Switched on relays                        |  |  |  |  |
|              | Blue LED 3 (13)   |                                | Activated beepers                         |  |  |  |  |

Table 11: LED indicators

### 4.4 Installation instructions

The door module is intended for DIN rail mounting into a switchboard or directly on the wall using the DIN rail enclosed.

## **5** Setting parameters of the module

| S   | Parameter                                                                       | Possible range          | Default setting     |  |  |  |  |
|-----|---------------------------------------------------------------------------------|-------------------------|---------------------|--|--|--|--|
| ete | Enabling of emergency function                                                  | YES / NO NO             |                     |  |  |  |  |
| am. | Address on a communication line                                                 | 1 ÷ 64                  | 1                   |  |  |  |  |
| Par | Keypad function                                                                 | Reason / PIN / Code     | Reason              |  |  |  |  |
|     | All parameters are given by programm http://www.techfass.cz/files/aps_400_confi | ing through the MCA 168 | control module, see |  |  |  |  |

Table 12: Configurable parameters

#### 5.1 Module parameters setting

Setting of all parameters of the reader module can be done only when the module is connected to the system bus of MCA 168 controller. Detailed instructions for setting reader module parameters are described in the *APS 400 Network Reader* configuration program user's guide available at: http://www.techfass.cz/files/m\_aps\_400\_network\_reader\_en.pdf.



### 5.2 HW address setting

HW address setting is defined by the configuration of address jumpers X2.1 ÷ 5, see Tab. 13.

When configuring the address jumpers it is necessary to keep in mind that the module occupies four successive addresses on system bus and X2 jumpers define the lower one. E.g., it is not possible to set the following module address to the value of the previous one + 1 - 3; the address conflict appears on system bus in this case.

| $\sim$ |  |
|--------|--|
| S      |  |
| Ð      |  |
| d      |  |
| m      |  |
| n      |  |
|        |  |

| Address | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | _         |
|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----------|
| X2.1    | •  | 0  | •  | 0  | •  | 0  | •  | 0  | •  | 0  | •  | 0  | •  | 0  | •  | 0  | Ta        |
| X2.2    | 0  | •  | •  | 0  | 0  | •  | •  | 0  | 0  | •  | •  | 0  | 0  | •  | •  | 0  | DIE       |
| X2.3    | 0  | 0  | 0  | •  | •  | •  | •  | 0  | 0  | 0  | 0  | •  | •  | •  | •  | 0  | 73.<br>Ao |
| X2.4    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | •  | •  | •  | •  | •  | •  | •  | •  | 0  | dre       |
| X2.5    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | •  | SS        |
| X2.6    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | jum       |
| Address | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | per       |
| X2.1    | •  | 0  | •  | 0  | •  | 0  | •  | 0  | •  | 0  | •  | 0  | •  | 0  | •  | 0  | S         |
| X2.2    | 0  | •  | •  | 0  | 0  | •  | •  | 0  | 0  | •  | •  | 0  | 0  | •  | •  | 0  | Χ2        |
| X2.3    | 0  | 0  | 0  | •  | •  | •  | •  | 0  | 0  | 0  | 0  | •  | •  | •  | •  | 0  | le        |
| X2.4    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | •  | •  | •  | •  | •  | •  | •  | •  | 0  | ae        |
| X2.5    | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | 0  | nd        |
| X2.6    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | •  | :         |
| Address | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |           |
| X2.1    | •  | 0  | •  | 0  | •  | 0  | •  | 0  | •  | 0  | •  | 0  | •  | 0  | •  | 0  | •         |
| X2.2    | 0  | •  | •  | 0  | 0  | •  | •  | 0  | 0  | •  | •  | 0  | 0  | •  | •  | 0  |           |
| X2.3    | 0  | 0  | 0  | •  | •  | •  | •  | 0  | 0  | 0  | 0  | •  | •  | •  | •  | 0  | se        |
| X2.4    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | •  | •  | •  | •  | •  | •  | •  | •  | 0  | t         |
| X2.5    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | •  | (O        |
| X2.6    | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | N)        |
| Address | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |           |
| X2.1    | •  | 0  | •  | 0  | •  | 0  | •  | 0  | •  | 0  | •  | 0  | •  | 0  | •  | 0  | -         |
| X2.2    | 0  | •  | •  | 0  | 0  | •  | •  | 0  | 0  | •  | •  | 0  | 0  | •  | •  | 0  | 0         |
| X2.3    | 0  | 0  | 0  | •  | •  | •  | •  | 0  | 0  | 0  | 0  | •  | •  | •  | •  | 0  |           |
| X2.4    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | •  | •  | •  | •  | •  | •  | •  | •  | 0  | re        |
| X2.5    | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | 0  | m         |
| X2.6    | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | •  | 0  | ov        |
|         |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | ed        |

#### (OFF)

Confirmation of any address setting by clicking the service button on the PCB is required. If not the address change will be taken into account after the nearest disconnecting and connecting of the module supply voltage.

### 5.3 Configuration of the reader keypad

The door controller can accommodate either reader without keypad or keypad readers. When a key press evaluation is required by the door controller, the keypad data transmission has to be configured as follows:



- One key buffering.
- Message length 4 bits.
- No parity.

#### 5.4 WIEGAND input data interpretation

#### 5.4.1 Standard configuration

The module accepts the *WIEGAND* formats mentioned in the *table 14*. If the read signal is formatted otherwise, the data are not considered as valid and thus ignored. If another format of data is required to be considered as valid, it is necessary to set up the *User configuration* of the data read at the WIEGAND input. The table also shows the process used for individual width of read data.

| Accepted formats | Read data width | Process                                        | Resulting code width |
|------------------|-----------------|------------------------------------------------|----------------------|
|                  | 26 bits         | Parity bits cut off (in front and at the back) | 24 bits              |
|                  | 32 bits         | Data bytes reversed                            | 32 bits              |
|                  | 34 bits         | Parity bits cut off (in front and at the back) | 32 bits              |
|                  | 37 bits         | Parity bits cut off (in front and at the back) | 35 bits              |
|                  | 42 bits         | Parity bits cut off (in front and at the back) | 40 bits              |
|                  | 44 bits         | Last 4 bits cut off                            | 40 bits              |
|                  | 56 bits         | Data bytes reversed                            | 56 bits              |

Table 14: Accepted formats of read WIEGAND data- standard configuration

#### 5.4.2 User configuration

The module offers an option to use the *user configuration of WIEGAND input interpretation*. By default the user configuration is not used. To enable user configuration, see the user's guide to the *APS 400 Network Reader* program, which is available at http://www.techfass.cz/files/m\_aps\_miniplus\_reader\_en.pdf.

Note: User configuration *WIEGAND input* requires a deeper knowledge of the issue; we recommend leaving the setting to an installation company.



# 6 Interface module functioning

#### 6.1 Operating modes

The NWGD 46LIFT dual Wiegand interfaces are intended for online operating mode on APS 400 system BUS (*APS BUS*). The activity of the modules is defined by the system controller; so the modules are able to provide various functions not only controlling of the door.

In case of the communication line fails the modules can work in offline mode (when the *emergency function* is enabled) - it concerns the exit readers mostly. The "Door Open" function for last 748 valid cards registered before can be performed in this mode only.

#### 6.2 Emergency "Door Open" function description

When the "Door Open" function is activated, the door lock is released and the beeper activated until the door is open or 5 s door lock release time has elapsed.

All events triggered while the offline mode is in progress are saved neither in the controller nor in the module memory.

## 7 Useful links

- Wiring diagrams: http://techfass.cz/diagrams-aps-400-en.html
- Program equipment: http://techfass.cz/software-and-documentation-en.html